A class of array codes correcting multiple column erasures
نویسندگان
چکیده
A family of binary array codes of size (p 1) n, for a prime p, correcting multiple column erasures is proposed. The codes achieve the maximum possible correcting capability. Complexity of encoding and decoding is proportional to rnp, where r is the number of correctable erasures, i.e. is simpler than the Forney decoding algorithm for ReedSolomon codes. The length n 2p 1 of the codes is twice as big as the length of the Blaum-Roth codes having comparable decoding complexity.
منابع مشابه
A Class Of Array Codes Correcting Multiple Column Erasures - Information Theory, IEEE Transactions on
A family of binary array codes of size (p 1) n, p a prime, correcting multiple column erasures is proposed. The codes coincide with a subclass of shortened Reed–Solomon codes and achieve the maximum possible correcting capability. Complexity of encoding and decoding is proportional to rnp, where r is the number of correctable erasures, i.e., is simpler than the Forney decoding algorithm. The le...
متن کاملNew array codes for multiple phased burst correction
Abstmct-A new optimal family of array codes over GF(q) for correcting multiple phased burst errors and erasures, where each phased burst corresponds to an erroneous or erased column in a code array, is presented. As for erasures, these array codes have an efficient decoding algorithm which avoids multiplications (or divisions) over extension fields, replacing these operations with cyclic shifts...
متن کاملCodes Correcting Phased Burst Erasures
We introduce a family of binary array codes of size t n, correcting multiple phased burst erasures of size t. The codes achieve maximal correcting capability, i.e. being considered as codes over GF (2 t ) they are MDS. The length of the codes is n = P L `=1 t ` , where L is a constant or is slowly growing in t. The complexity of encoding and decoding is proportional to rnmL, where r is the numb...
متن کاملMDS array codes for correcting a single criss-cross error
We present a family of Maximum-Distance Separable (MDS) array codes of size ( 1) ( 1), a prime number, and minimum criss-cross distance 3, i.e., the code is capable of correcting any row or column in error, without a priori knowledge of what type of error occurred. The complexity of the encoding and decoding algorithms is lower than that of known codes with the same error-correcting power, sinc...
متن کاملG. Richter and S. Plass: Error and Erasure Decoding of Rank-Codes with a Modified Berlekamp-Massey Algorithm, in Proc. of ITG Conference on Source
This paper investigates error and erasure decoding methods for codes with maximum rank distance. These codes can be used for correcting column and row errors and erasures in an ( ) array. Such errors occur e.g. in magnetic tape recording or in memory chip arrays. For maximum rank distance codes (Rank-Codes), there exists a decoding algorithm similar to the Peterson-Gorenstein-Zierler technique ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- IEEE Trans. Information Theory
دوره 43 شماره
صفحات -
تاریخ انتشار 1997